
Shape Machine: Conway’s Game Of Life
William Braga

I. Abstract

Conway’s Game of Life (Life) is a popular deterministic cellular automaton
invented in 1970. The game features a grid made up of square cells. Cells may be born
or die depending on the state of their eight neighbors; these rules were created to
simulate the effects of underpopulation, normal growth, and overpopulation. Each rule
can be written as a function determining whether a given cell will be alive or dead in the
following iteration with respect to the number of its neighbors that are currently alive.
The player of the game only acts in two ways: setting an initial configuration of the grid
and stepping through iterations. Life is renowned for the seemingly-random yet
reproducible designs that can be formed.

We conjecture Life can be implemented in the Shape Machine using a
non-traditional approach. Usually, Life is implemented programmatically by iterating
through each cell, counting the number of alive, adjacent cells it has, and updating its
state according to the rules. In Shape Machine, we will instead use a shape grammar
approach, where iterative updates are dependent solely on geometric conversions with
no literal counting. These shape grammar rules will generally be defined with 3x3 cell
grid shapes and markers on each cell to indicate state.

II. Challenges

There are two main considerations for the Shape Machine’s Game of Life. First is
technical: how should discrete iterations be handled to allow simultaneous updates?
From a programmatic approach, at each iteration, a copy of the grid is made at the
beginning and then merged at the end; all updates are determined using the original
grid and applied to the copy. Next is efficiency: what can be done to reduce the number



of explicitly defined shape rules and what can be done to improve processing time?
Exploiting shape symmetry and counting logic can drastically reduce the set of rules
that must be passed to the Shape Machine while retaining full functionality. For
processing time, grid and shape designs must be considered in order to reduce
computational load.



III. Planning

a. Structure

Implementing Life in Shape Machine requires planning on three layers of
abstraction: finding all geometric cell-update rules, choosing an efficient means
of encoding these rules, and designing the user display.

b. Shape Grammar

The geometric design of the Game of Life rules starts with a 3x3 subgrid,
where the center cell changes state depending on its eight neighboring cells. My
implementation of Life in Rhino assumes the grid is sufficiently large to not need
update rules around edges; all cell updates are made assuming there are always
eight adjacent neighbors. In theory, the specifications for Life include an infinite
grid, so no boundary conditions were officially created. Most implementations of
Life choose one of two grid boundary designs: constant, where update rules do
not change the values of the edges (i.e. those cells are always dead), and
toroidal/modular, where patterns that leave the screen will wrap around to the
other edge. If Life is able to run sufficiently fast on Shape Machine, these
boundary conditions should be considered (see also: scaffold attempts).
Constant boundaries can be created by having update rules reset any cells with
five neighbors (edges) or three neighbors (corners) to dead every iteration. A
toroidal boundary would be a significant challenge to encode in Shape
Grammars. A mechanism would need to be created to broadcast a signal to the
opposite edge to set those boundary cells to a certain value. The signal could be
a directional label on a cell that is transferred to one of its neighbors. Setting a
diagonal cell from a corner would be especially difficult. While the label is being



passed, the game must pause from updating, adding more overhead to the
Shape Machine.

Ignoring boundaries, there are four main geometric rule types defined by a
center cell’s state and the number of alive neighbors that need to be considered:
alive center and zero live neighbors, alive center and one live neighbor, dead
center and three live neighbors, and alive center and four live neighbors. All other
conditions either do not change the center cell’s state or would create a
redundant rule (as shown in the rule enumeration). To find the number of
geometric configurations a rule type has, a combination can be solved with
respect to the number of live neighbors. Alive center and zero live neighbors:
C(8, 0) = 1. Alive center and one live neighbor: C(8, 1) = 8. Dead center and
three live neighbors: C(8, 3) = 56. Alive center and four live neighbors: C(8, 4) =
70. One way to group possible subgrids (for graphs with 3 or 4 neighbors) is to
differentiate based on how many neighbors can be adjacent to each other (not
including diagonals).

c. Shape Machine Rules

For the Shape Machine to recognize and apply the shape grammar, a
design for subgrids must be created in Rhino. Life inherently requires much
processing from the Shape Machine to iterate through all cell subgrids for each
possible rule configuration. To save on time, the Rhino representation must be
simple for the Shape Machine to detect and replace. In addition, rules should be
condensed as much as possible using symmetry to avoid additional iterations.

Figure 4 shows an example rule for a cell with one neighbor. The space
for a cell is marked with a square. The cell state is a circle: red means alive,
black means dead. With few shapes to process, the rules should be simple for



the Machine to apply. The design, however, does not clearly indicate the cell
state to be 1:1 with the user’s front-end. Therefore, there must be a transition to a
visualization stage the user will see and interact with.

The next consideration for the Shape Machine rules is handling
simultaneous updates. Updates made to the grid must not affect rules applied to
other cells. When programming Life, a copy of the grid is made to store updates.
The original grid is queued to figure out how each cell should change. The actual
changes are done to the cells of the copy. At the end, the copy is kept and
becomes the original in the next iteration. The Shape Machine cannot create a
copy of the grid without knowing what cells are alive or dead. Updates will have
to be made on the same grid, but they cannot influence results between one rule
to the next (i.e. the order of the rules should not matter). Directly using rules
designed like Figure 4 would be incorrect, so modifications must be made.

Figure 5 shows an attempt at emulating a simultaneous update. The
yellow circle marks a cell to-die. Cells to-live were marked by a purple circle.
Only at the end of all the rules, the yellow circles will be changed to black -
marking death. This attempt solves one issue but not another. Marking a cell
yellow ensures that the cell will not alternate states within the same iteration. For
example, the Figure 4 implementation may mark a cell as dead and then alive as
neighbors are changed. Being yellow though, the cell can only change states
once. The issue not solved though, is that the original state of the cell needs to
be known to update its neighbors. If the Shape Machine could identify neighbors
that are red/alive or yellow (having already been processed), this attempt could
work. That modification can only be done in Shape Machine by copying the left
hand side with all combinations of alive or yellow circles - extremely inefficient.
Another design must be created that can solve both issues.



Figure 6 shows my final attempt at the Shape Machine rules. It solves
both simultaneous update issues. Cells cannot be updated multiple times
because no rules act on the smaller inner circle that marks the state should be
flipped at the end (i.e. the inner circle can only be added in one way). In addition,
this design allows neighbor cells to be updated correctly because the original
state still appears. The inner circle is additive, not a complete replacement. The
left hand side of a rule only specifies the elements that must be included and not
any that cannot appear. Therefore, the inner circle does not affect the left hand
side of any rule.

d. Visualization

Ideally, the cells in Rhino could appear fully filled in to show alive cells.
Also, dead cells would appear fully empty. Rhino allows a hatch to be added to a
shape to fill it in, but the Shape Machine cannot act on those objects. Alive cells
are modeled to be filled in using crosshatches. For the dead cells, if they are kept
fully empty, later rules acting on the empty squares would apply to both dead and
alive cells. This can be resolved by adding a label to all the cells and then
removing labels from any cells that are alive and have a label. For simplicity,
empty cells are marked with a tiny centered circle.





IV. Rule Enumeration

The following rules depict every possible configuration of neighbors. The center
cell shows how it should be updated (e.g. red circle with inner circle means it will
be dead next iteration). The axes of symmetry will be stated and the number of
configurations that correlates to; for example, if a graph has one axis of
symmetry, it can be rotated in four ways to create four different configurations.
The Shape Machine will detect those rotations, so the rule does not need to be
explicit.

a. Zero Neighbors (1 graph)



b. One Neighbor (8 graphs)

c. Two Neighbors (0 graphs)

Cells with two neighbors do not change states, so they do not need rules.



d. Three Neighbors (56 graphs)





d. Four Neighbors (70 graphs)

Graphs with four neighbors do not show any dead cells. This is because
these graphs can work with any configuration with at least four neighbors. The
positions where dead cells would be filled for an exactly four-neighbor graph are
left ambiguous.





e. 5-8 Neighbors (0 graphs)

These graphs are rendered redundant by the 4 neighbor rules.

V. Results

As currently implemented, Life works on the Shape Machine. A user may
create a grid of squares, set squares to alive or dead, and run the shape
machine for each generation. All the rules have been counted out and
implemented (for non-boundary cells) and simultaneous updates work properly.



The main caveat, unfortunately, is the runtime. The images in figure 19
each took almost 10 minutes to create; that is with all the optimizations
discussed. Due to the constraint, this implementation of Life would not suit as a
game or an able exploration of more complicated patterns.

VI. Future Work

After these results, I attempted to create a scaffold optimization. Instead of
running the machine on a static, fixed-size grid, have the grid only contain alive
cells and no spaces for dead cells. When the machine runs, it will pad each alive
cell with two layers of dead cells so that all updates can be made. After the
simultaneous updates, all dead cells are removed. The scaffold machine did run
faster, but there were two issues. First, removing dead cells was not simple.
Since the squares need to be completely taken out, they often remove edges
from cells that are alive (or remove them from dead cells making them no longer
recognizable as a square). I attempted to color code the edges of alive vs. dead
cells and remove all dead edges, but the Shape Machine could not properly
remove all straight edges from the grid. Second, after testing the speed of the
scaffold changes, I found that the speed improvement was not remarkable. On
further inspection, I realized that the main bottleneck is converting the
crosshatched alive cells into the back-end red circle representation. I believe it
has to do with the 4 axes of symmetry and number of construction lines. The
symmetry is essential though to match the symmetry of the back end rules.
Having a mismatch results in the final pattern being produced four times -
accounting for the ambiguity. In terms of visibility, I could not find a pattern that
was as visible as the crosshatch and allowed a more efficient runtime. Any future
work should first target the visualization stage for improvement.





VII. References

Conway’s Game of Life borders rules. (2016, March 15). Mathematics Stack
Exchange.
https://math.stackexchange.com/questions/1699282/conways-game-of-life
-borders-rules/1699329

GitHub - maxlancaster/game-of-life-with-grammar-seed: An implementation of
Conway’s Game of Life seeded by basic 2D Shape Grammars. (2018).
GitHub. https://github.com/maxlancaster/game-of-life-with-grammar-seed

Knight, T. K. (2002, January). Computing with emergence. MIT.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.3568&rep=
rep1&type=pdf

LifeWiki. (n.d.). LifeWiki. https://conwaylife.com/wiki/Main_Page

https://math.stackexchange.com/questions/1699282/conways-game-of-life-borders-rules/1699329
https://math.stackexchange.com/questions/1699282/conways-game-of-life-borders-rules/1699329
https://github.com/maxlancaster/game-of-life-with-grammar-seed
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.3568&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.3568&rep=rep1&type=pdf
https://conwaylife.com/wiki/Main_Page

