
Maximizing Screen Element Visibility

William Braga


Objective


Within a circular screen (graph) of radius ,  lines intersect each other. No two 
lines can be parallel, and each line must intersect all other lines within the screen 
boundary (i.e.  must be large enough to encompass all points of intersection). No more 
than two lines can intersect at the same point. 
Each line  is defined by an angle of entry and 
an angle of exit from the circle relative to its 
center: 

. The screen and line edges bound a 

set of interior faces, each denoted .


Given , return the arrangement of lines that produce the most optimal set of 
faces. The optimality of a face set is a function to be defined. One set is more optimal 
than another if its faces are more clearly visible within the screen. A face is not clearly 
visible when it is too ‘small’ or too ‘skinny’ (Fig 1).


Optimality


Our proposed function for face visibility is thickness. The thickness of a polygonal 
face is defined by the minimum perpendicular distance from each vertex to each of its 
nonadjacent edges for which that distance exists. For a face bounded by a circular arc, 
thickness is the smaller of the minimum perpendicular distance of each vertex to each 
of its straight, nonadjacent edges for which that distance exists and the distance from 

r n

r

li

li = (θ2i, θ2i+1) s . t .  i ϵ [0, n − 1],  θ2i  <  θ2i+1

fj s . t .  j ϵ [0, 
n (n + 1)

2
]

n



each interior vertex (i.e. vertices not on the circle boundary) to the circle’s edge along 
the vector formed by the circle center and vertex if it projects onto the face’s arc.


The optimality function for a face set is the thickness value for its least visible 
face, min thickness. An arrangement of lines is more optimal if its min thickness value is 
larger. Therefore, the objective is as follows:


is the vector between points a and b, is the unit vector between a and b

is the point at the circle’s center

 is a non-adjacent edge to a vertex s.t. a perpendicular distance exists from to , 

is a non-adjacent circular arc to an interior vertex s.t. projects onto :










Validity Theorem


	 Let  = . An arrangement of lines is valid iff 
 and no more than two lines intersect. In other words, all 

lines will intersect all other lines iff the order of the entry points is the same as the order 
of the exit points. A valid arrangement can be made from a random set of angles  by 
sorting them, setting each line to , and checking each intersection point 
is only between two lines.


Bruteforce Optimization


	 We developed an online algorithm that tests the min thickness for every 
combination of where each angle  is kept constant, increased by a small value , or 
decreased by  at an iteration step . All combinations are created using a recursive 
stack, and the with the largest min thickness is returned each time. For a small 
enough , this algorithm will converge on the most optimal angle set for a given initial 
configuration. We have not yet been able to prove whether optimality is independent of 
the starting angles, but for dozens of trials with random starts, the same min thickness 
has been reached. 


V(a,  b) U(a,  b)
c
e v  v  e
e′￼ v′￼ U(c,  v′￼) e′￼

argma xθ{minf{min(minv, e = ( p, q){ |  U(p,  q) x V(p,  v)  |},  minv′￼, e′￼ { |V(v′￼, c  + r * U(c,  v′￼)) |})}}  
=  argma xθ { minf { thickness( f ) } }

=  argma xθ { minthickness(θ ) }

θ′￼ argsort(θ )
∀i θ′￼i = θ′￼i+n + 1, i ϵ [0, n]

θR

li  =  (θR
i ,  θR

i+n)

θt θt
i ε

ε t
θt+1

ε



Odd Heuristic


	 We propose a heuristic to find the most 
optimal configuration in a graph with an odd 
number of lines, optimizing on one degree of 
freedom. Here, we define to be sorted by angle 
value instead of entry and exit tuples for 
simplicity. 


	 Let  and (i.e. 

equidistant points) at iteration . At each 
iteration, set and 

. This heuristic brings 

each pair of nonoverlapping points closer 
together by units each iteration. When the min 
thickness is at a local maximum for a value of , 
the best configuration for that graph is returned as . This heuristic has not been 
proven, but it has matched the output of the bruteforce optimizer on several trials.


Even Heuristic


We attempted to create a heuristic for graphs with an even number of lines, but it 
was proven incorrect by counterexample from the bruteforce optimizer.


Let  and (i.e. equidistant points) at iteration . At each iteration, 

set and (i.e. for the second half of the 

points, instead of bringing pairs closer together, push them farther apart).


θ

σ0 =  0 θ0
i   =

i*π
n

t = 0
σ t = σ t − 1  +  ε 

θt
i   =

i*π
n

+ ( − 1)i σ t

2

ε
σ t

θt

σ0 =  0 θ0
i   =

i*π
n

t = 0

σ t = σ t − 1  +  ε  θt
i   =

i*π
n

+ ( − 1)⌊ n
2 ⌋ +  i σ t

2





	 


Topology Theorems


	 The following formulas hold true for valid graphs. ‘UU,’ ‘UB,’ and ‘BB’ stand for 
edges between two unbounded faces, edges between one unbounded and one 
bounded face, and edges between two bounded faces. ‘U’ stands for unbounded faces 
and ‘B’ stands for bounded faces. An unbounded face is any face with a circular arc 
edge - it is not bounded within the screen. 


Next Steps


Lines Edges Faces UU UB BB U B

1 0 0 0

2 0 0 0

3 0 0 0

4 0

5

6

n … … … … … … …

n2

2n

n

(n − 1)(n − 2)
2

2n

2n

2n

n(n + 1)
2

  +  1

n + 2

n2 n + 1

n(n − 4) (n − 1)(n − 2)
2

n2 n(n + 1)
2

  +  1

n(n + 1)
2

  +  1

2nn2 n(n + 1)
2

  +  1

n(n + 1)
2

  +  1n2

2n 2n (n − 1)(n − 2)
2

n(n + 1)
2

  +  1

n − 2

2n 2n

n

2n

n2

n



	 Future work would be useful in creating a faster optimizer, determining a correct 
even heuristic, and finding proofs for the heuristics.


The bruteforce optimizer currently recreates the full graph mesh on each test; 
however, a full recreation is only needed if the topology of the graph changes. 
Therefore, as long as the topology is constant, the only change that needs to be done is 
updating the coordinate points of intersections; this may potentially save significant 
time. 


