
Project 2: Video Stabilization
William Braga

CS6475 Spring 2021
wbraga3@gatech.edu

I. LINK TO RESULTS

https://gatech.box.com/s/6mll6dvbyaz783z81xui83tmyvjot69b

II. PROJECT GOALS

A. Original Scope

From the outset, my first defined goals were to just read
the paper, understand the process behind it, and then to
replicate it as close as possible. From my understanding of the
project assignment and paper, my scope, on a high-level, then
became the following: (1) track the relative camera motion
between each pair of frames based on strong image features,
(2) derive the absolute motion by accumulating the relative
motions, (3) define the smoothing, proximity, and inclusion
constraints as per the paper, (4) solve the linear program
using those constraints, (5) calculate the smoothed path using
the smoothing homography from the linear program, (6) plot
the original camera path and the smoothed path, (7) write
two video files modifying the input, one with an overlaid
crop window and one that is cropped to fit that window,
(8) add saliency constraints to ensure the crop window is
encompassing important features of the video.

B. Scope Changes

Yes. An additional consideration was needed to account
for batching the frames when solving the program, since the
videos were to large to process as one unit. Also, I had to
drop the saliency portion of my scope due to time constraints
from various other issues I faced.

III. PROJECT DEVELOPMENT

A. Development Process

The first day I started coding for this project, I simply
wanted to be able to read in a video as a collection of stills, do
some sort of processing on them, and write out a new video. I
had some issues with the OpenCV documentation (shocking!),
but I was able to read in the provided skating video and max
out the blue channel in each frame to ensure my I/O portion
of the pipeline was working.
Next, I set out to do the feature tracking. My first implemen-
tation was homography based. I was trying to use ORB and
BFMatcher like in the panorama assignment, but I found my
results to not match the motion in the video. I spent quite a
bit of time trying to tune and get this approach to work, but
I finally settled for the optical-flow method I found through
Piazza. After some small tuning of the feature and lucas-
kanade parameters, the motion was matching the skating and

cityscape videos.
The crux of my work and time lay in the linear programming.
Like others, I used the cvxpy library. On my first jab at it,
I setup the constraints in the main loop where I was solving
for the homographies, only starting when t = 2 so that I could
reference the two prior frames. While writing the constraints,
I had to keep rechecking the confusing notation used by the
paper, especially in reference to indexing into variables. The
paper uses variables indexed up to t+3, which obviously I
had not defined yet in my loop currently solving for t. I also
needed to learn how to handle the cvxpy variables. Since they
were objects with no values yet, numpy functions were not
applicable to them. I had to learn the cvxpy function variants
and quirks about them.
At first, I was solving the LP at each iteration of the loop. This
resulted in a bizarre oscillating ’smoothed’ path (see Interim
Fig 1). The path seemed to repeatedly touch the camera path
and bounce back as far as the proximity/inclusion constraints
would allow. Thinking about the LP more, I thought it did
not make much sense to only consider one pair of frames for
the constraint, so I decided to attempt solving the LP once
after the loop, concatenating the constraints at each iteration.
This gave me an immediate positive feedback. Unfortunately,
when trying to scale to the entirety of the skating video, the
solver failed. This left me with needing to implement a batched
approach, which compounded my indexing confusion from
before (see Interim).
The last part of the pipeline I worked on was the actual
cropping of the video. My first endeavors were doomed - I
had a critical misunderstanding of the crop window. Having
not paid enough attention, I had mixed up the math for the
normal crop and the crop with saliency. I did not realize they
had separate approaches. In my early implementations, I was
trying to warp the entire image to fit a fixed crop window, but
then finally realized that my crop window was meant to be
variable and not the image.
Throughout the project, I faced several more minor bugs
like frequently mixing x and y with respect to OpenCV’s
functions, extraneous or missing inversions of the homography
matrix, and indexing/shape issues. The ones described above,
however, detail the more critical hurdles I had to face due
to misunderstandings of important project details or lack of
knowledge in certain areas. They make up the major narrative
of my learning to make the stabilizing pipeline.

https://gatech.box.com/s/6mll6dvbyaz783z81xui83tmyvjot69b


B. Interim Results

While writing the LP solver - once I had batching
implemented, I had to deal with many insane interim
results. My graphs were all over the place. Broadly, they
could be categorized in three groups: smoothed path seems
misaligned/independent of camera motion, smoothed path and
camera motion are the same, smoothed path unnecessarily
jerks to a new position. When my path seemed mostly
independent to the camera motion, that usually suggested an
error in my constraints. One related issue I had to face with
these ones is which direction to look when smoothing. At
some point, I had tried looking ’forward’ to new frames when
minimizing the derivatives, which is the direction the paper
notation suggests. Later on, I changed it back to the more
intuitive backwards reference and that lent me better results.
When debugging smoothed paths that overlaid the camera
paths, I found that my LP solver was often silently failing
to produce results. Usually, the issue was an unbounded
constraint that made my homography default to the identity
matrix. These were often caused by my indexing issues.
When implementing batching, I had mistakenly thought I
needed to limit my variables to the size of the batch and
reinstantiate them after solving (instead of making it the
number of frames large). The overhead introduced made my
code much more susceptible to going out-of-bounds or failing
to account for all my variables.
The jerking is unfortunately a problem that I was not able
to fully solve. The cause is mostly, if not wholly, attributed
to the batch size. The beginning of each batch slingshots
the homography since the old constraints are gone. My
solution was to always retain the previous batch’s constraints
(throwing away those that were two or more timesteps back).
This improved its performance on some videos but the issue
is still present and very glaring (see fig 3c, fig 4b/c).

(a) Oscillating Failed Result - Piazza

Fig. 1: Interim Result

C. Discussion

Briefly on saliency, with more time, I would have liked
to try some different methods of adding more weight to

certain features like face detection or background/foreground
separation.
On the main LP pipeline, I am glad that I was able to produce
a coherent output video. Many of my earlier attempts ended
with the image twirling about and eventually leaving the frame
entirely. The way the videos were cropped generally shows an
intention on attempting to keep relevant content in focus, albeit
not always in a smooth manner. I am also happy with all the
progress I made in the smoothing and batching. I expected
that my end result may not have any deviation or coherence
to the camera motion, and I am pleased to see some middle
ground has been stuck.
Now, onto what is not finished on the main pipeline... The
videos are obviously clunky. I think intention (by the LP to
smooth) is there but not implemented correctly. I believe this
is a combination of another constraint issue I could not find
and potentially an error with the actual cropping. The batch
jerk is particularly egregious but my attempts to mitigate it
were not successful enough apart from the test skyscape video.
This is definitely where I would want to invest more time and
effort. I really obsessed over these results, and although I am
glad to see the tangible progress I made, I can’t help but be
disheartened that I was not able to really figure out where my
code went wrong.
If I were to redo the project, I would have made some key
differences. Although I put an effort to comment, refactor, and
abstract out code, I would emphasize it even more. It surprised
me to see how quickly my code turned into entwined, soggy
spaghetti. One reason for this was my trying to strictly abide
by the notation in the paper. On a redo, I would ditch the
notation for descriptive names. In terms of testing, I would
try again to use pickle. I made a brief effort to use it to store
the frames read in by OpenCV, but it ran out of memory.
While debugging, it was to tempting to just run my code after
each modification hoping for instant gratification, when really
I should have laid some more groundwork for faster runtimes
and smarter unit testing.



IV. RESULTS

(a) Sample Video Optimal Crop Window

(b) Motion in x

(c) Motion in y

Fig. 2: Sample Video Results

(a) Optimal Crop Window

(b) Motion in x

(c) Motion in y

Fig. 3: Original Video 1 Results



(a) Optimal Crop Window

(b) Motion in x

(c) Motion in y

Fig. 4: Original Video 2 Results



V. CODE DISCUSSION

My image I/O is done through cv2.VideoCapture. I use
read() to take in each frame of the video and write using
cv2.VideoWriter to link stills together into a full video. My
motion plots are generated using matplotlib. I also use os func-
tions and filename processing lines from previous assignments
To get the relative motion homographies, I use openCV’s op-
tical flow pipeline. First, I call cv2.goodFeaturesToTrack() on
my first image to find pixels with strong corner values. I pass
feature parameters specifying how to conduct the search. Next,
cv2.calcOpticalFlowPyrLK uses the Lucas-Kanade algorithm
to find matching features in the second image. It also takes
parameters including the window size. Optical flow returns
both the points and the status of them. Points can be filtered
out as outliers if status is not 1 at that index. Finally, the
function cv2.estimateAffinePartial2D creates an affine matrix
specifying the transformation between the second and first
image. I concatenate a [0, 0, 1] third row to transform it into a
homography matrix and multiply it to my accumulated camera
motion matrix.
The linear programming library I used is cvxpy (functions
denoted cp.*). I define my parametized homography p and
slack variables e as cp.Variable objects. This means that
their value is still unknown, but they can be placeholders
in operations with other known variables/matrices. They can
also be used as placeholders in inequality statements, essential
when it comes to defining the constraints. When the LP
is solved, their values can be retrieved. When defining the
constraints, I alternate between the parametized and matrix
form of the homography. To make the matrix, I index into p
and use the cp.bmat() function. This defines a matrix with To
compare my computed Rt values to the slack e variables, I
call cp.vec() on Rt. I use the same functions for the corners
in my inclusion constraints. I then use cp.Minimize() to define
my objective object and plug that and my constraints into
a cp.Problem() object. Finally, solve() can be called on the
problem to perform the convex optimization and solve for the
variables.
My stabilize function only uses two methods. It invokes
cv2.perspectiveTransform() to find the corners of the cropping
rectangle after warping and cv2.warpPerspective() to actually
use the homography to transform the image into the crop
bounds. I call warpPerspective() with a canvas size equal to
the cropping rectangle. To make the red crop lines, I just call
cv2.line() with the corners.



VI. COMPUTATIONAL PIPELINE

Fig. 5: Computational Pipeline



REFERENCES

[1] Matthias Grundmann, et al., “Auto-Directed Video Stabilization with Ro-
bust L1 Optimal Camera Paths” https://www.cc.gatech.edu/cpl/projects/
videostabilization/stabilization.pdf

[2] Stack Overflow, ”How do I list all files of a di-
rectory”, https://stackoverflow.com/questions/3207219/
how-do-i-list-all-files-of-a-directory

[3] Learn OpenCV, ”How to find frame rate
of frames per second” https://learnopencv.com/
how-to-find-frame-rate-or-frames-per-second-fps-in-opencv-python-cpp/

[4] OpenCV, ”Getting started with videos” https://opencv-python-tutroals.
readthedocs.io/en/latest/py tutorials/py gui/py video display/py
video display.html

[5] CVXPY, https://www.cvxpy.org/install/
[6] Piazza, https://piazza.com/class/kjlitjmm1bi3it
[7] CS 6475, A3 Panoramas, https://github.gatech.edu/omscs6475/

assignments/tree/master/A3-Panoramas
[8] OpenCV, ”Optical Flow”, https://opencv-python-tutroals.readthedocs.io/

en/latest/py tutorials/py video/py lucas kanade/py lucas kanade.html

https://www.cc.gatech.edu/cpl/projects/videostabilization/stabilization.pdf
https://www.cc.gatech.edu/cpl/projects/videostabilization/stabilization.pdf
https://stackoverflow.com/questions/3207219/how-do-i-list-all-files-of-a-directory
https://stackoverflow.com/questions/3207219/how-do-i-list-all-files-of-a-directory
https://learnopencv.com/how-to-find-frame-rate-or-frames-per-second-fps-in-opencv-python-cpp/
https://learnopencv.com/how-to-find-frame-rate-or-frames-per-second-fps-in-opencv-python-cpp/
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
https://www.cvxpy.org/install/
https://piazza.com/class/kjlitjmm1bi3it
https://github.gatech.edu/omscs6475/assignments/tree/master/A3-Panoramas
https://github.gatech.edu/omscs6475/assignments/tree/master/A3-Panoramas
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.html

	Link to Results
	Project Goals
	Original Scope
	Scope Changes

	Project Development
	Development Process
	Interim Results
	Discussion

	Results
	Code Discussion
	Computational Pipeline
	References

